Program Analysis – Lecture 3
Professor Mooly Sagiv
Class notes by Ghila Castelnuovo and Ohad Shacham

In this lecture, we continue explaining natural and structural operational semantics. We augment the While language with "abort" statement, non determinism, and parallelism. In addition, we provide a short introduction of iterative program analysis.

Part 1: Operational Semantic
Operational Semantics

As we showed at the previous lecture, there are two types of operational semantics. The first type is natural operational semantics (Nat) which ignores the internal steps of a statement calculation and appears as executing the whole statement in one step. In this sense, Nat is close to denotational semantics and ignores non-termination.
The second operational semantics is structural operations semantics (SOS). This semantics emphasizes the individual step as opposed to executing the whole statement in one step. Therefore, it does not ignore non-termination and also can be applied to parallel programs.
Natural Operational Semantics
Given a statement S and a state s. we mark the execution of S on input state s as <S, s>. By <S, s> → s' we mark the rule that S's execution on s terminates and yields an output state s'.
As we show at the last lecture, we define the axioms for the natural semantics of the language While as:
· Assignment axiom – updates the value of x in the state s to be as the value of a
[image: image2.png][ass,.] < x=a,s > = s[x = A[[a]]s]

· Skip axiom – skip statement does not update the state.
[image: image3.png][skip,.] < skip,s >— s

The derivation rules are defined as:

· Compound rule – The compound statement is defined by the meaning immediate constituent statement
[image: image4.png]

· If/Else rule
1. If the boolean expression b is evaluated to tt in s then executing the if statement on s is equivalent to executing S1 on s.
[image: image6.png]lifiis]:

S5aEr s

R e s 5T

2. If the boolean expression b is evaluated to ff in s then executing the if statement on s is equivalent to executing S2 on s.
[image: image7.png]|
e
=

· While rule

1. If the boolean expression b is evaluated to tt in s then we use the definition of While itself to define the meaning of the derivation rule
[image: image8.png]oy te]S55=7s <whils bdoS.sr> —si
[while {1 ==

2. If the boolean expression b is evaluated to ff in s then executing the while statement on s is equivalent to executing the statement skip on s.

[image: image9.png][whileZf] 222

e ——

Derivation Trees

A derivation tree for a statement S, input state s, and an output state s' is the proof that
<S, s> → s'. The root of the tree is <S, s> → s', the leaves are the language axioms, and for each node n in the tree, there exists a derivation rule in the language r, s.t. n matches the conclusion of r and its children match the premises of r.
Top-Down Evaluation of Derivation Trees
Given a language rules and axioms, it is possible to automatically build an interpreter of the language. The interpreter, as the program it is interpreting, does not guarantee termination. The idea is to build the derivation tree of the program in a top down way and from left to right until we reach the language axioms. In deterministic languages as While, a derivation tree for a program is unique if at all exists, and therefore, there is no ambiguity during the tree generation. However, in non deterministic languages there might be a few derivation trees per program, therefore, for these languages, prioritization should be defined as seen in the compiler’s course.
An example of a derivation tree for a statement in the While language
y := 1; while ((x=1) do (y := y * x; x := x - 1) with an input state s s.t. x is evaluated to 2 in s (sx = 2) is as follows:

The head of the root is the program, the leaves are the axioms and the internal nodes are conclusions of the derivation rules using the child nodes as premises.

The interpreter builds this derivation tree from top to bottom, left to write until it reaches the axioms. Then the output state for each axiom is calculated and the output state propagates either to a parent or to a sibling depending on the parent's derivation rule. For example, if the derivation rule is compns and the output state is of the left child then the output state propagates to the right child as its input state. Otherwise, if it is of the right child, then the output state is propagates to the parent to serve as its output state.
In term of non deterministic languages, the interpreter can either use prioritization that disambiguates the language s.t. each expression has a single derivation tree. Or try to build the derivation tree by trying a constant number of steps towards each path (when non determinism exists) and gradually increasing this constant until a derivation tree is found (if one exists). The idea is to build a derivation tree while avoiding non terminating paths.
Semantic Equivalence

Given two statements S1 and S2, we say that these statement are semantically equivalent if for all states s and s' <S1, s> → s' iff <S2, s> → s'

Note that we define the semantic equivalence only using the terminating calculations. The reason is that in Nat the non terminating calculations are undefined. Therefore, the natural operational semantics of programs that have non-terminating paths may be equivalent to the natural operation semantics of programs that have only terminating paths. Later, we will see the equivalent definition of structural operation semantics that takes into account the non terminating calculations.
Structural Operational Semantics

Structural operational semantics emphasizes the individual steps and not the whole program calculation.

As before, given a statement S and a state s, we mark the execution of S on input state s as <S, s>. And by <S, s> => γ we mark the rule of S's execution step on s. In this case if S execution is atomic then γ would be an output state s' otherwise γ would be a pair <S', s'> while S' is the remaining computation which need to be performed on s'. In case where there is no matching derivation rule for S and s, then γ would be a stuck configuration denotes that this calculation step is not valid in the semantics. Stuck denotes that the calculation does not reach a final state and, therefore, this state could not be defined in Nat
We define the meaning of a program P on an input state s as the set of final states that can be executed in arbitrary finite steps.

The axioms for the SOS are defined as follows and are identical to the axioms of the Nat due to the fact that skip and assignment are atomic operations in While.
[image: image10.png]lass,,.] < x:=a,s > = s[x = A[[a]]s]

[image: image11.png][skip,,.] < skip,s =— s

The derivation rules for the SOS are different than the Nat because we should define for each statement whether its calculation is atomic or not. If it is atomic then the results of the calculation is an output state, otherwise, the result is a pair of the remaining statement computation and an intermediate state. The SOS derivation rules are:
[image: image12.png]<Sys>
<5;:5.,5>

<S5ps' >

1
[compZ,.] <555,5 =

[image: image13.png]

[image: image14.png][whilesos] < while b do S,s > = < if b then (S; while b do S)else skip,s >

[image: image15.png][ifff] <if b thenS, else S,,s >

<5,s>

[image: image16.png][

ifff] < if b then S, else S,,5 > => <S,,5s >

Derivation Sequences
For each given statement S and a state s there exists a finite or infinite derivation sequence.
A finite derivation sequence for <S,s> is a sequence (0, (1, (2 …, (k s.t.
· (0=<S, s>

· (i ((i+1
· (k is either stuck configuration or a final state

A finite derivation tree denotes that there exist k activations of derivation rules, starting from <S, s>, that either result in a finite state or in a stuck configuration.
Example

An example of a program that has a finite derivation sequence that terminates in a stuck configuration is as follows:

if (x=0) then abort else y := y/x

where "abort" denotes a stuck configuration.

Given a state [x→0][y→19] the following derivation sequence is a finite derivation sequence for < if (x=0) then abort else y := y/x, [x→0][y→19]> with one step applying the IFSOS rule:

< if (x=0) then abort else y := y/x, [x→0][y→19]> (<abort, [x→0][y→19]>
An infinite derivation sequence for <S,s> is a sequence (0, (1, (2 … s.t.

· (0=<S, s>

· (i ((i+1
An infinite derivation tree denotes that there exists infinite activations of derivation rules starting from <S, s> that do not result in a finite state or in a stuck configuration.
An example of finite derivation sequence for the following factorial program with the given input state sx=3 is:

<y := 1; while ((x=1) do (y := y * x; x := x - 1), s>
(< while ((x=1) do (y := y * x; x := x - 1), s[y→1]>

(<if (((x =1) then skip else ((y := y * x ; x := x – 1); W), s[y →1]>

(< ((y := y * x ; x := x – 1); W), s[y → 1]>

(<(x := x – 1 ; W), s[y → 3]>

(< W , s[y → 3][x → 2]>

(<if (((x =1) then skip else ((y := y * x ; x := x – 1); W), s[y →3][x → 2]>

(< ((y := y * x ; x := x – 1); W), s[y →3] [x → 2] >

(<(x := x – 1 ; W) , s[y → 6] [x → 2] >

(< W, s[y → 6][x → 1]>

(<if (((x =1) then skip else ((y := y * x ; x := x – 1); W), s[y → 6][x → 1]>

(<skip, s[y → 6][x → 1]> (s[y → 6][x → 1]

As you can see, this derivation sequence starts with the pair
<y := 1; while ((x=1) do (y := y * x; x := x - 1), s> and terminates in the final state s[y → 6][x → 1]. Therefore, it is a finite derivation sequence for <y := 1; while ((x=1) do (y := y * x; x := x - 1), s>.
An example of infinite derivation sequence for the program "while true do skip" with the given input state s is:
<while true do skip, s>

(<if ((true) then skip else skip; while true do skip, s>
(< skip; while true do skip, s>

(< while true do skip, s>

…
This derivation sequence is infinite because we arrived to the same statement "while true do skip" with the same input state s. Therefore, there exists an infinite derivation tree that is build by infinite concatenations of the following sequence:
<while true do skip, s>

(<if ((true) then skip else skip; while true do skip, s>

(< skip; while true do skip, s>

Program Termination
We say that a statement S terminates on an input state s if there exists a finite derivation sequence starting at <S,s>. S terminates successfully on s if this derivation sequence leads to a final state.
We say that S loops on s if there exists an infinite derivation starting at <S,s>.
Properties of the Semantics
Semantics equivalence
We say that S1 and S2 are semantically equivalent if for all s and (which is either final or stuck state < S1, s> (* (if and only if < S2, s> (* (. And also, there exists an infinite derivation sequence starting at < S1, s> if and only if there exists an infinite derivation sequence starting at < S2 , s>.
The equivalence definition requires that the maximal finite derivation sequences result in the same final state or stuck configuration. And unlike the Nat, in here the definition should take into account the infinite derivation sequences and demand their existence.
Deterministic

If <S, s> (* s1 and <S, s> (* s2 then s1=s2
Composition

The execution of S1; S2 on an input state s can be split into two parts:
· execute S1 on s yielding a state s'
· execute S2 on s’

Extensions to While
We now discuss possible extensions to the While language. The extensions are:
· Abort statement (like C exit w/o return value)

· Non determinism

· Parallelism

· Local Variables

· Procedures

· Static Scope

· Dynamic scope

Abort
Extending the While language with abort statement adds an option to terminates the execution. The nice thing is that no new derivation rules should be added for the abort. The reason is that abort moves the execution into a stuck configuration, therefore, because the semantics is defined by providing the legal derivation rules, adding a token abort to the language without defining a derivation rules for the token cause the derivation sequence to reach a stuck configuration when reaching the abort token.
abort statement and skip statement are not-equivalent in Nat and SOS. In NAT there is no rule for ABORT and skip yields the same state. In SOS, skip yields the same state in one step and ABORT leads to stuck
The "while true do skip" statement is not equivalent in the semantics because this program does not terminate, therefore, in NAT when the program loops on a given state, the semantics is undefined. In SOS looping is reflected by infinite derivations and in Nat there is no rule for looping, therefore, in Nat looping and abort cannot be distinguished and, unlike in SOS, are semantically equivalent.
Non Determinism

Extending the While language with non-determinism adds an option to write in the program, instead of a single statement to be executed, a set of possible statements that can be executed.
Formally, the resulting abstract syntax is the following:

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |while b do S| S1 or S2
When the “S1 or S2” means that either S1 or S2 is executed.

The main motivation of this extension is to allow the programmer to write a program which will work correctly independently and without assumptions on external elements, such as the input from the user or the environment.

For example

x := 1 or (x :=2 ; x := x+2)

means that either the statement (x:=1) or (x :=2 ; x := x+2) will be executed. This means that after these statements, x will either be equal to 1 or x will be equal to 4.

For example, if we suppose that x is an input from a user, then the programmer can write a program which is dependent on x but it will work both if x is 1 or if x is 4.
Natural Semantic

· [or1ns] < S1, s> → s’

< S1 or S2, s> → s’
· [or2ns] < S2, s> → s’

< S1 or S2, s> → s’

Structural Semantic

· [or1sos] <S1 or S2, s> => < S1, s>
· [or2sos] <S1 or S2, s> => < S2, s>
When applying the Natural Semantic to the example above, we will have two derivation trees
The first one for <(x:=1) or (x :=2 ; x := x+2), s> → s[x→1] and it will be as following:

The second one for <(x:=1) or (x :=2 ; x := x+2), s> → s[x→4] and it will be as following.

In the same way, when applying the Structural Semantic, we have:
1. <(x:=1) or (x :=2 ; x := x+2), s> =>or1sos<(x:=1),s> => s[x(1]
2. <(x:=1) or (x :=2 ; x := x+2), s> => or2sos <(x :=2 ; x := x+2), s> => <(x:=x+2), s[x(2]> => s[x(4].
This means that with both semantics we will have two different final states.

Differently, if we take for example (while true do skip) or (x :=2 ; x := x+2):

1. When applying the Natural Semantic, we will have one derivation tree for
< (while true do skip) or (x :=2 ; x := x+2), s> (s[x(4], which means that even if one branch of the or statement is an infinite loop, the Natural Semantic will end with a good final state ignoring the fact that the program contains an infinite loop.
2. When applying the Structural Semantic, we will have two derivation sequences, one finite and the other one infinite, which means that the Structural Semantic will document the existence of the infinite loop.
As we already noticed before, we can see that the Natural Semantic ignores "bad things” that happen during the program execution, and therefore, in case of Non-Determinism, when using Natural Semantic the Non-Determinism suppresses infinite loops.
The same is not true for the Structural Semantic, where, in the Non-Determinism case, this doesn’t suppress loops.

Also in this case we see that the Structural Semantic is more suitable for the kind of analysis that the programmer usually wants to do:
In this case, for example, the programmer will usually want to know whether a branch of the program can exploit in an infinite loop.
For the above reason, the two following programs are equivalent under natural semantics and do not equivalent under structural semantics:
(i) (while true do skip) or (x :=2 ; x := x+2)
(ii) (x :=2 ; x := x+2)
The reason is that the natural semantics ignore the non terminating path of (while true do skip) which makes the two programs equivalent.
Parallelism

We will now add a new construct to the While language:
S::= x := a | skip| S1; S2| if b then S1 else S2|while b do S| S1 par S2
The meaning of the new construct is that the statements S1 and S2 will be both execute but the execution can be interleaved. This means that the semantic needs to take into account all the different interleavings which may occur.
Example 1:

In the following example:
x:=1 par (x:=2; x:=x+2)

The following orders can occur:

1. x:=1

x:=2

x:=2

2. x:=2

x:=1

x:=x+2

3. x:= x+2
x:=x+2

x:=1

So after this, x can either be 4, 3 or 1.
Example 2:

A more interesting example would be the following:

1: x:=10
2: (while(x>0) x := x-1) par (while (x≤10) x:= x+1)
In this example, since the two loops are running in parallel, there exists an order of statements when none of the loops will ever terminate, although for each loop there exists a ranking function which implies the termination of the loop.
Defining structural operational semantics for parallel programs is simple due to the one step behavior of the semantics. However, defining natural operational semantics to parallel programs does not capture the behavior of the program and produce an under-approximated behavior that reduces most of the interleavings allowed by the program. The reason is that the semantics does not capture the intermediate states of the non atomic statements, and therefore, cannot interleave between concurrent executions of non atomic statements. For example, if we would define a natural semantics for par then the only allowed interleaving by the semantics for the previous program would be:
x:=10

while(x>0) x := x-1
while (x≤10) x:= x+1
and

x:=10

while (x≤10) x:= x+1
while(x>0) x := x-1
Structural Semantic

1. [par1sos] <S1, s> => <S’1, s’>

< S1 par S2, s> => < S’1 par S2, s’>

2. [par2sos] < S1, s> => s’

 < S1 par S2, s> => < S2, s’>

3. [par3sos] <S2, s> => <S’2, s’>

< S1 par S2, s> => < S1 par S’2 , s’>

4. [par4sos] < S2, s> => s’

< S1 par S2, s> => < S1,s’>

In this way we define inductively the possible interleavings that can happen in the program.
Specifically, one and two take account of the cases where the first statement starts first (the first rule describes the cases where the first statement is an atomic statement, and therefore, after its execution only S2 statement needs to be executed, and the second rule describes the cases where the first statement is partially executed). Rules three and four take account of the cases where the second statement starts first.
When applying the Structural Semantic to the example above we get the following derivation sequences:
1. <x:=1 par (x:=2; x:=x+2),s> => <(x:=2; x:=x+2), s[x(1]>
 => <(x=x+2), s[x(2]>
 => s[x(4]
2. <x:=1 par (x:=2; x:=x+2),s> => <x:=1 par x:=x+2, s[x(2]>
 => <(x:=1), s[x(4]>

 => s[x(1]

3. <x:=1 par (x:=2; x:=x+2),s> => <x:=1 par x:=x+2, s[x(2]>
 => <(x:=x+2), s[x(1]>

 => s[x(3]
Natural Semantic

We can easily notice that we cannot define the Natural Semantic on the parallel construct. This is because the Natural Semantic considers the execution of each statement as an atomic construct and doesn’t split it into real atomic entities. For this reason the Natural Semantic can’t express interleaving of computations.
Local variables and procedures

So far we defined a pretty limited language that doesn’t contain procedures and local variables. Now we will add to the While language blocks which contain variable and procedures declarations.
Formally we have:

S::= x := a | skip | S1;S2| if b then S1 else S2 | while b do S| begin DvDp S end |

 call p |

Local Variables:

Dv::= var x := a ; D v| (
a sequence of local variables declarations.
The idea of Dv is that all the variables declared in the begin Dv S end are local to it and don’t influence outside the block.

For example in a statement as:

1: begin var y:=1;

2:
(x:=1;

3:
begin var x:=2; y:=x+1 end;
4:
x := y+x)

5: end
The x in line 3 refers to the variable defined in line 3, while the x in lines 2 and 4 refer to the variable defined somewhere before the statement (can be a local variable in a bigger block or a global variable).

Let’s define DV(Dv) to be the set of variables defined in Dv:

DV(var x := a; Dv) = {x} (DV(Dv)

Dv = (
For the Natural Semantic we will enrich the semantic in the following way:
We will add to → a new transition system →D. The idea of the new transition system, is that, as before, the transition relation specifies the relationship between the initial and final state, < Dv, s> →D s’, but now the goal is to specify on which variable the statement should apply in the statements inside the blocks. In other words, the variables declarations modify the current state to a new one, which remembers the declarations.
· [blockns] < Dv, s> →D s’, <S,s’>→s’’

< begin Dv S end, s> → s’’[DV(Dv)→s]
· [varns] < Dv, s[x → A[a] s]> →D s’

 < var x := a; Dv, s> →D s’
· [nonens] <(, s> →D s
The meaning of the rule blockns is as following:

· s’ is the state that we get as consequence of the new declarations.
· s’’ is the state that we get after applying the statement S on the new state s’.
· s’[DV(Dv)→s] is the final state that we get, where
s x
if x (X

(s’[X→s]) x =
 s’ x
else
(if x is declared in X then we take its value in s, else we take the value of x in s’.)
 This means that the final state after a Block, will assign for each variable the value as following:
· If x is declared again in Dv then the new value of x will be as it was before the block.

· Otherwise the value of x will be as after in s’’.
Procedures:

Dp::= proc p is S ; Dp | (a sequence of procedures declarations.
It is easy to see that augmenting While's Natural Semantic to handle procedures is easier than augmenting the Structural semantics. The reason is that the Natural Semantic defines the behavior of an entire statement without splitting into atomic statements, and therefore, it does not have to take into account the intermediate states that we get when calling a procedure (the activation record, the registers etc). This includes also recursion which is naturally defined with the Natural Semantic.
In a different way, since the Structural Semantic needs to split each statement into atomic statements, it is much harder to augment it to handle procedures as it will need to take into account all the intermediate states that we have when calling a procedure.
Transition System Semantic
We briefly talked about the addition of the Transition System semantic.
This semantic is a very low level semantic, and adds the program counter (PC) to the state. The idea is to add the program counter to the set of the states and take into account the program counter to define the control and data flow. The statement is implicitly defined by the program counter and therefore, can be used to define the transition.
Given the following program associated with a program counter:
1: y := 1;

while 2: !(x=1) do {

3: y:= y * x;

4 x := x-1;

}

5:

The transition system of the program is defined as:
<pc(1, x(0, y(0> => <pc(2, x(0, y(1>
<pc(2, x(1, y(n> => <pc(5, x(1, y(n>

<pc(2, x(m, y(n> => <pc(3, x(m, y(n> (m ≠1)
<pc(3, x(m, y(n> => <pc(4, x(m, y(m*n>

<pc(4, x(m, y(n> => <pc(2, x(m-1, y(n>
Part 2: Iterative Program Analysis - Introduction
The iterative program analysis is the traditional form of program analysis. This analysis is the more common technique to gather information at various point of the program.
We start by giving as example the Constant Propagation problem. The aim of our analysis is to determine for each program point, whether a variable has a constant value whenever the execution reaches that point. Furthermore, if a variable is constant at some point we would like to know its value.

Information about constants can be used, for example, in the process of optimization, where all uses of a variable may be replaced by the constant value.

Computing Constant Analysis: Introduction Example
First of all we will define some new values and operation which will be used by the analysis:

1. Top a value denoted “T” will serve us to indicate that a variable is potentially non-constant

2. Bottom a value denoted “(” is the dual value of “T”. This is the most accurate value that can be assigned. It captures the case where the set of represented states is empty.
3. Join ((is an operation between states which computes for item in the environment the most accurate value which is bigger than the value in the joined states. We will talk in the following lecture about the lattice notion. For now we can say that all the values in the environment are partially ordered, where (is the lowest value and T is the biggest one. Then, for example [x (0] ((x (1] = [x (T] and [x ((] ((x (1] = [x (1].
Let’s look at the following example:
1. z := 3

2. x := 1

3. while (x > 0) {
4
if (x = 1) then y := 7

5.
else y := z + 4

6. x := 3

7. print y

The analysis is implemented by an iterative algorithm, which will iterate on the Control Flow Graph (this means that if there are loops it will follow them) and for each statement will remember the environment, which is a mapping between each variable and its value in (({(,(}.
The analysis will run on loops as long as the environment changes. Once we get to the same statement with the same environment value as on the previous iteration we exit from the loop.
In the beginning we have

([x->0, y->0, z->0]
1. z = 3 ([x->0, y->0, z->3]
2. x = 1 ([x->1, y->0, z->3]
3. while (x > 0) (([x->1, y->0, z->3]
4. if (x = 1) then y = 7 ([x->1, y->7, z->3]
5.

else y = z + 4 here we don’t compute the value of the state since we don’t execute the “else” statement
6. x = 3 ([x->3, y->7, z->3]
7. print y ([x->3, y->7, z->3]
)

Then, we iteratively continue running the loop and we get:
([x->0, y->0, z->0]
1. z = 3 ([x->0, y->0, z->3]

2. x = 1 ([x->1, y->0, z->3]

3. while (x > 0) (([x->T, y->0, z->3]
after the first iteration we don’t know the value of x
4. if (x = 1) then y = 7 ([x->1, y->7, z->3]
here we don’t compute the value of the state since now we don’t execute the “if” statement
5. else y = z + 4 ([x->T, y->7, z->3]
6. x = 3 ([x->T, y->7, z->3]
7. print y ([x->T, y->7, z->3]
)
On the third loop beginning the environment value is the same as in the second loop; therefore we will exit from the loop and we will finish the analysis.
We can notice that in this program, despite the fact that we do not know the value of x after the program’s execution, we can still prove that the statement 7 will always print 7.
Computing Constant Analysis: Formal Introduction
The way in which the analysis is done, is as follows:

1. We create the Control Flow Graph of the program.
2. We associate to each edge of the Control flow graph a transfer function. The transfer functions are functions which associate the Concrete Domain to the Abstract Domain.

3. Iterate on the graph until a solution is found.

4. The solution which will be found will unique, but the number of the iterations may be influenced by the order of evaluation (for each in an if/else statement).
1. Constructing the Data Flow Graph

First of all we create the Data Flow Graph of the program that describes the behavior of the Program Counter.
In the previous example we get:

[image: image17.emf]
2. Associating Transfer functions to the edges
As stated before, the transfer functions associate the Concrete Domain to the Abstract Domain. These functions depend on the analysis and on what we want to prove. In our example we will associate the functions as below.
[image: image18.emf]
3. Iterative computation
After associating the transfer functions, the algorithm will go over the graph in an iterative way (i.e. will go over the loops) and will compute the value of each variable after each statement. The analysis will continue to iterate thru a loop as long as the environment for the current statement is different than before. If we get to a statement in the loop and after we apply the transfer function the environment is the same as before the statement than we exit from the loop.

The number of iterations is then bounded by 2*n which is the number of variables: this is because for each variable we can first go from (to some value and then from this value to T.
After running the algorithm on our example we get the following:
[image: image19.emf]
We can see that in the following example the analysis can prove that at the end of the program y equals 7, z equals 3 while it can prove anything about x, as it is unknown.

Low level view

The goal of this representation is to explicitly represent the program counter by inserting it into the state.

Now, each state will be represented by a function from the PC to a value of the environment.
Then, transition system, a function from state to state, will represent the analysis.
Formally this means that we will create the functions:

State: PC ((Var (Val)

Transformer: State (State
Let’s look again at the previous example:

1. z := 3

2. x := 1

3. while (x > 0) {
4. if (x = 1)
5. then y := 7

6. else y := z + 4

7. x := 3

8. print y
}

Then, the Low Level View will be as following:
State(PC == 1) 0

all the variables are assigned to 0.

State(PC == 2) S1[z(3]

z is assigned now to 3.
State(PC == 3) S2[x(1] ((S8

Join of the state S2 + x assigned now to 1 (on the first iteration) and the state S8 (in case it is not the first iteration)
State(PC == 4) S3

State(PC == 5) S4┌┐ [x(1, y(T, z(T]
this is because here we know that x is 1.
State(PC == 6) S4
State(PC == 7) S5[y(7] ((S6[y((S6z + 4)] Here we join the possible options.
State(PC == 8) S7[x(3]

z is assigned now to 3.
<y := 1; while ((x=1) do (y := y * x; x := x - 1), s> (s[y(2][x(1] >

compns

<y := 1, s> (s[x(1] >

<while ((x=1) do (y := y * x; x := x - 1), s> (s[y(1] >

assns

Whiletts

<y:=y*x; x:=x-1, s[y(1] > (s[y(2] [x(1]>

<while ((x=1) do (y:=y*x; x:=x-1), s[y(2] [x(1]>(s[y(1] >

compns

Whileffs

<y:=y*x, s[y(1] > (s[y(2] >

<x:=x-1, s[y(2] > (s[y(2] [x(1]>

assns

assns

<(x:=1) or (x :=2 ; x := x+2), s> → s[x→1]

or1ns

<(x:=1), s> (s[x(1]

assns

<(x:=1) or (x :=2 ; x := x+2), s> → s[x→4]

or2ns

<(x :=2 ; x := x+2, s> (s[x(4]

compns

<x:=x+2, s[x(2] > (s [x(4]>

<x:=2, s> (s[x(2] >

assns

assns

(e.e[x(3]

(e.e[y(e(z) + 4]

(e.e[y(7]

(e if(x≠ 1) then e else (

(e if(x≤0) then e else (

(e if(x>0) then e else (

(e.e ┌┐ [x(1, y(T, x(T]

(e.e[x(1]

(e.e[z(3]

[x(T, y(7,z(3]

[x(T, y(7,z(3]

[x(T, y(7,z(3]

[x(T, y(7,z(3]

[x(T, y(0,z(3]

[x(T, y(0,z(3]

[x(0, y(0,z(3]

[x(0, y(0,z(0]

(e.e[x(3]

(e.e[y(e(z) + 4]

(e.e[y(7]

(e if(x≠ 1) then e else (

(e if(x≤0) then e else (

(e if(x>0) then e else (

(e.e ┌┐ [x(1, y(T, x(T]

(e.e[x(1]

(e.e[z(3]

